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Abstract. We present WalkNet, an interactive agent walking movement
controller based on neural networks. WalkNet supports controlling the
agents walking movements with high-level factors that are semantically
meaningful, providing an interface between the agent and its movements
in such a way that the characteristics of the movements can be directly
determined by the internal state of the agent. The controlling factors are
defined across the dimensions of planning, affect expression, and per-
sonal movement signature. WalkNet employs Factored, Conditional Re-
stricted Boltzmann Machines to learn and generate movements. We train
the model on a corpus of motion capture data that contains movements
from multiple human subjects, multiple affect expressions, and multi-
ple walking trajectories. The generation process is real-time and is not
memory intensive. WalkNet can be used both in interactive scenarios in
which it is controlled by a human user and in scenarios in which it is
driven by another AI component.

Keywords: agent movement · machine learning · movement animation
· affective agents

1 Introduction

Data-driven movement animation manipulation and generation techniques use
recorded motion capture data to preserve the realism of their output while pro-
viding some level of control and manipulation. This makes them more suitable
for generating affect-expressive movements, compared to the physics-based ap-
proaches to modelling and generating movement animation. Data-driven tech-
niques bring the possibility of augmenting a corpus of motion capture data so
that human animators have more assets at their disposal. Furthermore, one can
use movement generation models in interactive scenarios, where a human user
or an algorithm controls the behaviour of the animated agent in real-time.

With the increasing demand for content for nonlinear media such as video
games, a movement controller that supports generating movements in real-time
based on the given descriptions has applications in AI-based agent animation,
interactive agent control, as well as crowd simulation.
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Data-driven methods allow for manipulation of the motion capture data,
either by concatenating, blending, or learning and then generating data. Con-
catenation methods repeat and reuse the movements in a motion capture corpus
by rearranging them, making longer streams of movements from shorter seg-
ments. In blending, the representations of two or more motion capture segments
are combined to create a new segment that exhibits characteristics from the
blended segments. Compared to other techniques, machine learning models are
better at generalizing over the variations in the data and generating movements
that do not exist in their training corpus. Some of the machine learning tech-
niques also provide mechanisms for controlling and manipulating what is being
generated, making them suitable for controlling virtual agents.

The body of the research on machine-learning-based movement generation
has some challenges. Controlling the movements of an agent requires a descrip-
tion of the movement to be generated, and a machine learning model that is
capable of mapping those descriptions to movement, in real-time. In this regard,
the majority of the works suffer from one or more of the following: (1) they
do not support controlling the generated movements (e.g., [3]), (2) they only
support controlling a single factor (e.g., [1]), (3) the controlling factor is often
not clearly defined with respect to an agent’s internal state(e.g., [13]), or (4) the
generation process is computationally and/or memory intensive (e.g., [14]).

In order to overcome the above limitations, we present WalkNet, a walking
movement controller for animated virtual agents. At its core, WalkNet uses a
neural network to learn and generate its movements based on a set of given con-
trolling factors. The factors are chosen to work directly with the internal state
of the agent, corresponding to the planning, expression, and personal movement
signature dimensions of movement. In future, we intent to extend the model
to support controlling the functional dimension as well. The agent can plan its
walking movements based on any given trajectory. The affective state is mod-
elled by the valence and arousal dimensions of affect. Furthermore, the movement
generation model is capable of exhibiting distinctive personal movement signa-
tures (styles). This allows for using the same model for a group of agents that
each portray a different character. The main contributions of our approach are
summarized below:

– Walknet provides control over multiple dimensions of movement in a single
model.

– Learned over a limited sample of affective states (i.e., only high, neutral,
and low points) and only two human subjects, WalkNet learns a generalized
space of affect and movement signature.

– The generation process is real-time. Unlike graph and tree based structures,
there is no need for search or optimization to generate desired movements.

2 Background and Related Work

Controlling Movement Generation In data-driven movement-generation ap-
proaches, different techniques, and the combinations of them are used to control
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and manipulate the characteristics and qualities of motion capture data. These
include organizing the data using specialized data structures, such as motion
graphs [8,5], as well as blending and interpolating multiple segments. Regarding
the machine learning models, there are multiple ways that they support control-
ling the generation: 1) Train a separate model for each point in the factor space.
Each model is trained only on the data that correspond to that particular point,
thus only imitating the same factor value. To control the generation, one has to
switch between the models. 2) Using a parametric probability distribution, in
which the parameters of the distribution are a function of the controlling factors
[6], allows for controlling the statistical characteristics of the generated data. 3)
By designing the machine learning model in a way that provides a mechanism
for a factor variable to control the characteristics of the generated movements.
In particular, Factored Conditional Restricted Boltzmann Machine (FCRBM)
uses a context variable (Figure 3.b) that controls the behaviour of the network
through gated connection between the observations and the hidden variables
[12].

Machine Learning Methods for Movement Generation Machine learning
models that are used for learning and generating motion capture data range
from dimensionality reduction (DR) techniques (e.g., [10]), to the Gaussian
Process Latent Variable Models (GPLVMs) (e.g., [14]), Hidden Markov Models
(HMMs) (e.g., [2]), temporal variations of the Restricted Boltzmann Machines
(e.g., [12,1]), Recurrent Neural Networks (e.g, [3]), and Convolutional Autoen-
coders combined with Feed-Forward Networks (e.g., [7]).

DR techniques do not handle the temporality of the motion capture data.
Furthermore, the dimensionality-reduction-based techniques rely on preprocess-
ing steps such as sequence alignments and fixed-length representation of the data.
The main limitation of the GPLVMs is that they demand heavy computational
and memory resources, which makes them unsuitable for real-time generation.
HMMs overcome the limitations of the two aforementioned families of models
but provide a limited expressive power regarding capturing the variations in the
data. Neural networks provide a better expressive power than HMMs. Convolu-
tional Autoencoders have shown promising results in generating motion capture
data and offline controlling [7]. Factored Conditional RBM (FCRBM), with its
special architecture that is designed to support controlling the properties of the
generated data, has shown to be able to generate movements in real-time, and
learn a generalized space of the movement variations [12,1].

Affect-Expressive Movement Generation Taubert et al. [11] combine a
Gaussian process latent variable model (GP-LVM) with a standard HMM that
learns the dynamics of the handshakes, encoded by the emotion information.
Samadani et al. [10] use functional principal component analysis (FPCA) to
generate hand movements. Alemi et al. [1] train an FCRBM to control the valence
and arousal dimensions of walking movements.

Our Approach We build WalkNet on top of the previous work by the same
authors [1], extending the affect-expression control with the walking planning
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Fig. 1. The affect model described by valence and arousal dimensions with the 9 zones
recorded in the training data. The mapping to the categorical emotion labels are based
on Plutchik and Conte [9]. H : high, N : neutral, L: low, V : valence, and A: arousal.

and personal movement signature. Our work differs with graph-like structures as
it does not require to build an explicit and fixed data-structure, does not require
search and optimization for generating movement, and does not require storing
the movement data for generation. It also differs from the work of Crnkovic-Friis
and Crnkovic-Friis [3] as it provides a mechanism to control the generated data.
It allows for real-time and iterative generation compared to the work of Holden
et al. [7].

3 Training Data

For training the model, we use a set of motion capture data that provides move-
ments with variations in walking direction (planning), the valence and arousal
levels (expression), and the personal movement signature. As we could not find a
publicly available motion capture database that provides movements with such
variations, we recorded our own set of training data. The complete data set is
publicly accessible in the MoDa database1.

The training data includes the movements of two professional actors and
dancers (one female, one male). Each subject walks following a curved figure-8-
shaped path. The turning variations in this pattern allow the machine learning
model to learn a generalized space of turning directions. To capture a space
of affect-expression, each subject performs each movement with nine different
expressions along the valence and arousal dimensions [9], shown in Figure 1.

1 http://moda.movingstories.ca/projects/29-affective-motion-graph

http://moda.movingstories.ca/projects/29-affective-motion-graph
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Fig. 2. The WalkNet controller, embedded in an agent model.

Using the dimensional representation of affect over the categorical systems allows
for interpolation and extrapolation of the affect states, as well as transitions.
Each valence and arousal combination is repeated four times to capture enough
motor variabilities.

The original motion capture data consists of a skeleton with 30 joints, result-
ing in 93 dimensions including the root position, with their rotations represented
in Euler angles. The data is captured at 120 frames-per-second. We use expo-
nential maps [4] to represent joint angles to avoid loss of degrees-of-freedom and
discontinuities. We replace the skeleton root orientation and translation by the
delta values of the translational velocity of the root along the floor plane, as
well as its rotational velocity along the axis perpendicular to the floor plane. We
remove the dimensions of the data that are constant or zero and downsample the
data to 30 frames-per-seconds. The final data set used for the training consist of
18 motion capture segments (2 subjects × 9 affective states), containing 37,562
frames in total, with 52-dimensional frames.

4 The Walking Controller

System Overview As shown in Figure 2, at the core of the WalkNet, the
movement generator, a Factored, Conditional Restricted Boltzmann Machine
(FCRBM), generates a continuous stream of movement. The movement stream
is modulated by a set of controlling factors, determined from the internal state
of the agent or through external commands. From an agency perspective, we or-
ganize these factors into different dimensions, mainly the function, the planning,
the expression, and factors that together make the personal movement signa-
ture of the agent. WalkNet does not make any assumptions on how the agent
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movement descriptor is set. Thus, making it flexible to be integrated into various
agent models for different applications.

Agent Movement Descriptor We use an agent movement descriptor AMD to
formalize the contributing factors to the agent’s movements at time t along the
dimensions of function (F ), planning (P ), expression (E), and personal move-
ment signature (S):

AMDt = 〈Ft, Pt, Et, St〉

In WalkNet, the F is always set to walking. The planning dimension of walk-
ing is defined by Pt = 〈Dt〉 where Dt represents the direction that the agent
intends to walk towards, relative to its current orientation. The expression di-
mension is defined by Et = 〈Vt, At〉 where Vt and At stand for valance and arousal
levels at time t respectively. Currently, we use the actor/performer’s identity as
a proxy to model the personal movement signature, through a weighted combi-
nation of a K-dimensional vector, representing K subjects:

St = {I1t , I2t , .., IKt |
K∑
k

Ikt = 1}

We recognize that this is a simple way of capturing movement signature.
In the future, we plan on learning a representation that captures the personal
movement signature.

Training Data Annotation Here we describe how we annotate our data to
capture different states of the factors in the agent movement descriptor.

As we have two human subjects in our training data, we use a 2-dimensional
label with a one-hot encoding scheme for the movement signature.

We use the valence and arousal representation of affect to annotate the ex-
pression of affect. Each movement segment in the training data is labeled with
low, neutral, and high for both their valence and arousal levels. After exper-
imenting with different ranges, we use the values of 1, 2, and 3 to represent
low, neutral, and high levels in the annotations. Although the training labels
are discrete, the valence and arousal values are continuous in nature, and for
the generation, one can specify any real value within the range of [0, 4], as the
FCRBM is able to interpolate or extrapolate between those discrete states.

For annotating the heading direction, we determine the labels using a method
that is inspired from Kover et al. [8]. For the label at frame t, considering the
projection of the traveled path of the skeleton root on the ground floor, we select
two points on the path, one at a very close distance to the current location, and
another one at a slightly further location from the current location (Figure 3.a).
We calculate the angle between the two lines that result from connecting the two
chosen points and use this angle as a measure of the heading direction. After
scaling the angle to have a value between -1 and +1, directions towards the right
of the subject are associated with positive numbers, and directions towards the
left of the subject are associated with negative numbers.
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Fig. 3. (a): Calculating the direction of the subject in the training data. (b): FCRBM’s
architecture with valence and arousal labels modulating the interactions between the
past visible, current visible, and current hidden units.

Initial experiments showed that using only a one-dimensional label vector for
modelling the direction parameter causes poor results when asking the model to
generate movement for the values that are around the center of the continuum.
The problem arises from the fact that the model associates high values with one
end of the spectrum and low values with the other end of the spectrum, while
semantically, there is no difference between each end. This issue is overcome by
using a two-dimensional vector D = [L,R] to annotate the two polarities of the
direction. The two dimensions of this vector complement each other, following
the relationship R = 1 − L in a normalized case. Therefore, the direction is
encoded as two labels, one for right and one for left.

As a result, each frame t of the training segment s is annotated with a 6-
dimensional label of the form:

Ls
t = 〈Is

1

, Is
2

, V s, As, Rt, Lt〉

Note that as the identity of the subject and the valence and arousal levels
are fixed for each training segment, only Rt and Lt values are changed between
each frame of the same segment.

Movement Generator We use an FCRBM to generate the movements of the
agent. As shown in Figure 3.b, FCRBM learns the autoregressive, as well as
the nonlinear temporal patterns in a time-series. Every weight in FCRBM is
modulated by the value of its context unit, making it possible to change the
energy landscape of the model by changing the value of the context unit, and
effectively controlling the model’s prediction. In WalkNet, the FCRBM learns
to predict the next motion capture frame, given a recent history of the motion
capture frames, as well as the movement descriptors fed to its context unit Z.
This results in a predictive function in the form of:
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Fig. 4. WalkNet’s output. Top: making a transition from a high valence and high
arousal affective state to a low valence and low arousal state. Bottom: making a tran-
sition from a low valence and high arousal affective state to a high valence and low
arousal state.

Mt = f(M<t, Zt), Zt = 〈I1t , I2t , Vt, At, Rt, Lt〉
By iteratively calling this function and feeding it with the generated frames

from the previous cycles, we can continuously generate movements that are mod-
ulated by the given descriptors.

5 Results

In this section, we demonstrate the capabilities of WalkNet in generating realistic
motion capture data. We use an FCRBM with 150 hidden units and 400 factors,
trained for 3000 epochs. The model takes 12 past motion capture frames as input
and predicts the next frame, modulated by a vector of 6 dimensions (Z).

Affect Expression By specifying different values for the valence and arousal
levels in the agent movement descriptors, WalkNet can generate a variety of
affect expressions, even for those values that do not exist in the training data.
This allows for generating walking movements for any point in a range of [0, 4].
With this, one can not only generate walking movements for high, neutral, and
low levels of valence and arousal but also make transitions from one state to
another (Figure 4).

In a previous work by the same authors [1], a study was conducted to vali-
date the expressiveness of the movements. The analysis shows that independent
human observers can successfully identify different levels of arousal. However,
they can only correctly identify the low valence levels, and often confused the
neural and high valence levels. The analysis reached the same results for the
recorded movements of human actors as well. We believe that due to the lack of
facial expression, recognition of valence through movements, as represented by
a stick figure, is often challenging for humans.

Movement Signature WalkNet can generate signatures that are interpolations
between the two actors. The difference in the generated movement signatures are
demonstrated in the accompanied video2.

2 https://youtu.be/3JBfGF4tsmA

https://youtu.be/3JBfGF4tsmA
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(a) (b)

Fig. 5. (a) The projection of the agent’s movements on the ground floor plane, making
turns with different angles. (b) The interactive controller.

Navigation As the results are demonstrated in Figure 5.a, different values for
the direction factor generates movements along curves with different curvatures.

Interactive Control WalkNet through a graphical user interface (GUI) devel-
oped for this purpose. The GUI allows the user to choose the parameters of the
model, while the agent’s movements are rendered in 3D in real-time. A snapshot
of the GUI is shown in Figure 5.b. A video of the GUI is also provided2.

Generating each frame takes 0.0063 seconds on a MacBook Pro with an
Intel(R) Core(TM) i7-4850HQ CPU at 2.30GHz. Thus, at 30 frames-per-second,
it takes 0.1890 of a second to generate the movements for each second.

6 Conclusion and Future Work

This paper introduces WalkNet, a walking movement controller. It can generate
realistically-looking walking movements in real-time, while modulating them us-
ing an agent movement descriptor that specifies the expression of affect through
the movement, the walking direction, and the personal movement signature of
the agent.

WalkNet is designed with integration into agent models in mind. It does not
make any assumption on how the movement descriptor is specified, making it
possible to be used in interactive scenarios, in which a user directly controls the
agent’s movements, or in scripted or AI-driven applications. For example, given a
target path to follow, by observing the traveled path, the agent can continuously
correct its course to stay on the target path.

In future, we plan to perform more formal and quantitative evaluation of the
model. Furthermore, we intend to use more human subjects in the training data.
Another future direction is to extend the model to include more than one type
of movement (function). For example, allowing the agent to switch from walking
to standing to sitting while performing hand gestures.
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